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The hippocampus has long been associated with navigation

and spatial representations, but it has been difficult to link

directly the neurophysiological correlates of hippocampal

place cells with navigational planning and action. In recent

years, large-scale population recordings of place cells have

revealed that spatial sequences are stored and activated in

ways that may support navigational strategies. Plasticity

mechanisms allow the hippocampus to store learned

sequences of locations that may allow predictions of future

locations based on past experience. These sequences can also

be activated during navigational behavior in ways that may

allow the animal to learn trajectories toward goals. Task-

dependent alterations in place cell firing patterns may reflect

the operation of the hippocampus in associating locations with

navigationally relevant decision variables.
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Introduction
Navigation is a complex phenomenon, encompassing a

number of different strategies and behaviors that preclude

a straightforward association with any particular brain

system. Nonetheless, the one brain system that is most

frequently associated with rodent navigation is the hippo-

campal system. Hippocampal place cells fire selectively

when an animal occupies a restricted location in an environ-

ment (Box 1), and they have long been hypothesized as the

neural substrate of an internal, cognitive map of the

environment that is necessary for flexible navigation,

map-based spatial learning, and episodic memory [1].

However, a vexing problem for such notions has been that,

although place cells can convey information about the

current location of the animal, navigation needs a system
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that conveys information about desired targets and routes

to those targets. It has been difficult to find strong evidence

that the hippocampus represents this crucial information

needed to guide navigation to specific locations away from

the current location of an animal. However, the develop-

ment of multi-electrode recording techniques, which allow

the simultaneous recording of dozens of neurons, has

allowed quantitative analyses of neural populations that

have begun to shed light on how the hippocampus can

create representations of spatial (and perhaps temporal

[2,3�]) sequences that can extend many meters away from

the current location of the animal, and that may constitute

the neural substrate for online navigation decisions.

Hippocampal place cells offer an ideal
representation for navigational learning
We can begin to understand the hippocampal contri-

bution to navigation by comparing the neural responses

found in the hippocampus with the highly geometrical

and relatively task-independent spatial representations

that have been found outside the hippocampus proper.

Cells of one class, called grid cells, fire in a geometrically

regular pattern of locations that form a pattern of equi-

lateral triangles that tessellate the floor of an environment

[4�,5]. Cells of another class, called head direction cells,

fire whenever the animal’s head points in a particular,

allocentric direction in an environment [6]. Both grid cells

and head direction cells appear to be rather rigid and

inflexible spatial representations, firing in similar patterns

relative to each other across environments [7,8]. The

hippocampal representation of space is very different,

in that it is extremely flexible and adapts to the task at

hand [9–12]. Within the framework of Markov decision

problems (MDPs) [13], of which navigation is an

example, the hippocampus appears to learn a Markovian

state space representation (Box 2). What this means in

simple terms is that cells in the hippocampus come to be

active in such a way that direct associations with their

activity can specify navigationally useful actions or

represent navigationally relevant quantities. This

imposes severe constraints upon hippocampal responses.

They need to individuate places at the same spatial scale

as the animal makes navigational decisions, despite the

fact that sensory stimuli do not in general correspond to

places, and even grid cell and head direction cell inputs

are active in spatially distributed patterns. Nevertheless,

the place fields of hippocampal cells are both highly

localized and cover the entire environment in a relatively

uniform way [14]. Moreover, it has been shown that place

fields do not straddle impenetrable barriers to movement
www.sciencedirect.com
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Box 1 Hippocampal place cells and theta phase precession

(A) A rat is depicted running left to right on a linear track. Each oval

on the track represents the borders of the spatial firing field (‘place

field’) of a single hippocampal neuron (‘place cell’). (B) The green

place field of Part A is shown in more detail. The contours indicate

increasing firing rates of the neuron as the rat runs through the place

field. Although the place field may be shaped symmetrically in an

approximately Gaussian form when the rat first experiences an

environment, after repeated trajectories in a stereotyped direction,

the place field can become skewed in the direction opposite to the

rat’s motion (as shown here), causing the center of mass of the place

field to shift backward [33]. Below the track is indicated the

prominent, 8-Hz theta rhythm that is present in the hippocampal field

potential when an animal engages in exploratory activity and

movement. Both principal cells and interneurons of the hippocampus

(and many related areas) are strongly modulated by the theta rhythm.

Below the theta rhythm are shown spikes from the place cell as the

rat proceeds through the place field. The precise timing of the spikes

relative to the phase of the theta cycle reveals a temporal code for

location within the place field. The cell fires in bursts of activity at a

slightly faster rate than the theta rhythm of the field potential. Thus,

the first spikes of the cell fire at a late phase of the theta rhythm

(indicated by the asterisk), and each successive burst of spikes

occurs at increasingly earlier phases of the rhythm. This advance-

ment of phase with successive spike bursts is called theta phase

precession [39].
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[15], which accords with the fact that correct actions on

two different sides of a barrier are unlikely to be the same

despite the Euclidean proximity of the two regions. Place

fields are task-specific, in that different navigational tasks,

and hence different sets of actions, within the same

environment are handled by different sets of place cells

[9]. When within the same task the same place must be

associated with different actions at different times, this

distinction can be handled by using different cells for the

same place [10,16,17,18�,19,20]. Given these properties,

place cells can be modeled as the input to an actor-critic

model of navigational learning, using the temporal differ-

ence learning rule (Box 3), which can learn short paths in a

classic spatial task as quickly as real rats do [21].

Recent evidence supports the notion that areas down-

stream of the hippocampus may act in accord with this

conception of hippocampal place cell function, with the

ventral striatum being the downstream critic [22,23�] and

the dorsal striatum being the downstream actor [24].
www.sciencedirect.com 
Particularly, van der Meer and Redish recently provided

evidence that a subset of ventral striatum neurons ramp

up in activity during approaches to reward sites, which

matches what would be expected from a critic

[21,25��,26]. Moreover, ventral striatum neurons exhibit

a close connection to fine-timescale dynamics in the

hippocampal representation of state, specifically theta

phase precession [25��], forward sweeps [23�], and replay

[22,27,28], which are discussed in the following sections.

Evidence for encoding and expression of
spatial sequences during active movement
During exploration of an environment, an animal can

learn to navigate to a goal by encoding the sequence of

locations required to get to the goal from a given starting

point. Computational models have shown that the

temporal asymmetry of long-term potentiation can

encode such sequences in the synaptic weights of a place

cell matrix [29–31]. Because long-term potentiation

(LTP) is preferentially induced when a presynaptic cell

fires before a postsynaptic cell, whereas long-term depres-

sion (LTD) is induced in the opposite situation [32], a

place cell that fires early in a trajectory toward a goal will

enhance its ability to fire a cell that fires slightly later in

the trajectory. A prediction of the models is that the

second cell will begin to fire earlier and earlier during

repeated runs of the trajectory, as it is increasingly driven

by the presynaptic cells that fire earlier in the sequence.

This prediction was confirmed in recordings of CA1 place

cell populations [33], and the phenomenon is dependent

on NMDA receptors [34]. This effect was interpreted as

CA1 cells learning to predict the future location of the

animal based on its current trajectory and its past experi-

ence [35]. CA3 place cells show a similar phenomenon.

Unlike CA1, which reverts back to its baseline firing

locations after 24 hours, CA3 retains the learned

sequences for long periods of time, suggesting that the

recurrent collateral network of CA3 is the long-term

repository of the spatial sequence information [36].

While storing such sequence information may be a useful

property to aid the hippocampus in its role in navigation,

these mechanisms are not specific to the hippocampus.

Head direction cells show a similar backward shift of their

tuning properties when the animal runs repeated laps on a

track [37]. Furthermore, repeated stimulation of visual

cortex neurons with sequences of oriented bars can shift

the orientation tuning of a neuron in a manner analogous

to the shifting of place fields and head direction tuning

curves [38]. Thus, these mechanisms are likely to be

broadly prevalent in the nervous system, as many brain

systems require the capacity to encode commonly experi-

enced sequences of stimulation in order to predict future

states based on prior experience.

Hippocampal cell activity also expresses sequences

within individual cycles of the prevalent theta rhythm.
Current Opinion in Neurobiology 2012, 22:294–300
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Box 2 Markov Decision Problem (MDP)

An MDP is a problem in which an animal or agent passes through a sequence of states, in each of which a decision must be made, but with the

following Markov property: the decision at each state is independent of whatever states were passed through to get to the current state. For

example, navigating to a single goal location is an MDP with locations as states — this is the logic behind a GPS system, which, in the context of

any particular destination, only needs to know where you are in order to specify navigational actions. Panel A shows a rat navigating in an

environment from a start location (S) to a goal location (G). Note that its optimal trajectory to the goal location is the same regardless of whether it

took routes 1, 2, or 3 to arrive at its present location. Alternatively, a rat performing a spatial alternation task as in panel B must choose actions

differently on alternate passes through the same place, and so with locations as states this is not an MDP. However, the problem can be made into

an MDP by expanding the representation of state to include sufficient history, for example in this case by representing alternating trajectories from

one goal to the next as different states (panel C) [10]. Casting problems as MDPs allows for more efficient learning algorithms, such as temporal

difference learning.
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This finding was suggested indirectly from the obser-

vation of theta phase precession, a temporal relationship

between place cell spikes and the running-related theta

rhythm in the hippocampal EEG [39] (Box 1). However,

theta precession is typically extremely variable over

repeated passes through a place field, as the theta phases

associated with spiking at a particular location can span a

wide range of phases when the spikes are collated over a

session. This variability, coupled with the variability of

place cell firing rates from trial to trial [40] and the

dependence of the rate of precession on the size of a

place field [41,42], made the prediction of sequences

nontrivial. By recording the activity of large numbers

of place cells simultaneously, the existence of theta

sequences was confirmed [43]. Moreover, shuffling spike

phases between trials in a way that preserved the theta
Box 3 Actor-critic models of learning using the temporal

difference learning rule

The actor-critic is a widely studied model of both animal and

machine learning [46], in which an actor network attempts various

actions in various states, while an internal critic provides reinforce-

ment to the actor about which actions worked best. The critic is

necessary because external reward is insufficiently informative —

direct rewards are too sparse in space and time — so the critic

learns a more informative, smoothly increasing expectation of reward

called a value function. Temporal difference learning enforces this

smoothness by minimizing an error between temporally successive

estimates of value, and this spreads out the value function from a

sparse reward location throughout the state space. Much recent

work has mapped the actor and critic onto specific neural structures

(e.g., reward prediction representation in ventral striatum vs. action

representation in dorsal striatum [86]). However, very little is known

about the neural substrate of state space representation.

Current Opinion in Neurobiology 2012, 22:294–300 
precession relationship for individual cells had the effect

of disrupting theta sequences across cells, indicating that

the relative timing of spikes during theta sequences is

more tightly controlled than would be predicted from the

theta precession relationship alone [43]. One possible

corollary of this result is the recent observation that theta

precession may be less variable when considered within a

single trial rather than averaged across trials [44]. Place

field expansion can be interpreted as the elongation of

theta sequences (Figure 1). Conceptually, theta

sequences have been proposed to compress behavioral

spatiotemporal sequences into a timescale conducive to

LTP-induction mechanisms [45]. Moreover, since the

sequences tend to be repeated over multiple theta cycles

as an animal passes through a region of space, the chunk-

ing of behavioral sequences into multiple, repeated theta

sequences effectively turns one-trial learning into

multiple trials, which may help to solidify the sequence

memory.

Expression of entire navigational sequences
during navigation tasks
Like other MDPs, navigation suffers from the well-known

temporal credit assignment problem, which is how to relate

reward or outcome information that may occur only at the

end of a long sequence of decisions to the individual

decisions within that sequence [46]. Theta sequences

appear to be restricted in spatial extent to overlapping

place fields. Thus, although they potentially allow infor-

mation to be accessed relating to places immediately ahead

of an animal, and may even allow exploration of altern-

atives at a choice point up to �1 m [47], they do not

allow information to be accessed corresponding to longer
www.sciencedirect.com
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Figure 1
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Schematic theta sequences are shown for three successive theta cycles

as an animal moves along a track. Blue shaded row: for an individual

place cell, black spikes indicate firing patterns that occurred on early

laps, whereas on later laps, predictive red spikes are added to the black

spikes as an animal runs through a place field. These spikes effectively

shift the place field backwards toward earlier positions. Green shaded

column: from the perspective of the population, the predictive red spikes

correspond to the elongation of look-ahead sequences, thus accessing

information about locations further ahead of the animal. Note that

because the predictive spikes occur at later theta phases, the original

place representation for each cell can be recovered from the early part of

the theta cycle. Thus information associated with each cell’s place field

need not be overwritten by this predictive expansion/sequence

mechanism.
trajectories. However, much longer sequences called

replay sequences have been reported. First shown in sleep

[48–50], where they were hypothesized to be involved in

long-term memory consolidation [51], they have more

recently been shown to occur robustly during the awake

state as well. It was reported that when an animal stops at

the end of a trajectory, the entire behavioral sequence of

activity across place cells is replayed in reverse order,

beginning with those place cells corresponding to the

current position at the trajectory endpoint and ending with

those place cells that were active at the beginning of the

trajectory [52]. Moreover, any single behavioral episode

can give rise to large numbers of reverse replays. The

phenomenon has been extensively replicated

[53,54,55�,56�,57]. Consistent with a role in navigational

planning, distance information is faithfully represented in

replay sequences [54]. Consistent with a role in learning,

reverse replay appears to be more prevalent on a novel

track than a familiar one [52], whereas forward ordered

sequences display the opposite pattern [54]. Moreover,
www.sciencedirect.com 
reward appears to play a critical role in modulating replay

levels [58�]. Unlike theta sequences, awake replay

sequences can indeed extend through the entirety of a

navigational trajectory, even up to 10 m in length [55�],
which is the limit that has so far been tested.

Theoretically, because of the Markovian property of

MDPs, reverse replay offers a much more efficient mode

of planning than forward look-ahead, since trajectories

from multiple starting positions are evaluated simul-

taneously in the context of the same outcome, and in a

way that respects the Markovian structure of the problem.

Interestingly, reverse replay has been proposed repeat-

edly in the machine learning literature as a way to speed

up learning within temporal difference learning models

[59–61]. A key insight is that reverse replay does not

replace the previous actor-critic model, but instead natu-

rally augments that model, in that offline reverse playback

will improve value estimates in the critic. From a model-

ing perspective, reverse replay is most useful early in

learning, when the critic knows almost nothing, and so

getting value information out from the reward point is the

central task. Later on, when estimates are available every-

where, this may not be so useful, and short-range com-

parisons might be preferred in order to make finer scale

changes to the critic’s value function. As noted above, this

pattern does appear to hold [52,54]. Thus, awake replay,

and reverse replay in particular, may be an ideal mech-

anism for learning and planning in navigational tasks.

Navigation in larger state spaces
A recent report tracking the movements of a single wild rat

revealed that it completely explored a 9.5 ha island and

then swam 400 m across open water to a neighboring island

[62]. Therefore, the state space for real-life navigation is

much larger than what is typically studied in the laboratory.

Another way in which navigational state spaces can be very

large is when considering the multiplicity of related navi-

gational problems, such as navigating to different goals

within the same space. Theoretically, one way to deal with

larger state spaces is to incorporate hierarchical planning

and control [63]. One simple model augments the state

space representation with a set of larger states, thus per-

mitting generalization between states, that can speed

learning in large state spaces and allow generalization to

novel goal positions [64]. Interestingly, place cells with

larger fields are found at the temporal (ventral) end of the

hippocampus [65,66], and more recently it was shown that

place field size and grid field scale increase gradually along

the septo-temporal (dorsal–ventral) axis [67,68]. According

to the model, it would be sufficient for cells with larger

place fields to project to the same downstream value and

action areas, for the effects of generalization and acceler-

ated learning to take place [64]. However, a critical require-

ment in the model is that larger fields should respect the

structure of the navigational environment, and this remains

to be tested.
Current Opinion in Neurobiology 2012, 22:294–300
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Cross-species comparisons
The studies reviewed here are almost exclusively from

rats, the species that has provided the overwhelming

majority of data about hippocampal place cells. A ques-

tion of interest is whether the phenomena described here

are specific to rat navigation, or whether they are common

to other species. There are little data in the literature on

other species regarding the backward expansion, theta

sequence, and awake replay sequence phenomena

described here for rats. However, there are accumulating

data from other species that suggest a commonality of

mechanisms across species, as well as hints of intriguing

differences. For example, as reviewed above, replay

sequences in the alert state may be related to active

navigation decisions. Awake replay events have been

reported in mice [50], whereas sleep replay has been

reported in the song system of zebra finches [69]. The

circuitry and network mechanisms that allow sleep replay

may also be present in the awake state, and if so, they may

allow similar mechanisms for behavioral control.

Place cells have been recorded from the hippocampus of

mice [70,71], rabbits [72], bats [73], and monkeys [74,75],

and there is evidence that they may exist in humans as well

[76]. Interestingly, hippocampal recordings from pigeon

hippocampus failed to find robust place cells, although

there was evidence of hemisphere-dependent spatial

modulation and trajectory encoding [77,78]. Moreover,

the theta rhythm has also been recorded during alert

behavior in different species [79–81], and place cells in

mice demonstrate theta phase precession [82], thereby

raising the possibility that theta sequences are present

as well across species. An interesting difference comes

from the bat, however. When bats crawl along a surface,

they show both place-cell firing in hippocampus [73] as

well as grid-cell firing in the medial entorhinal cortex [83�].
However, under these conditions, there is no evidence of

strong, movement-related theta in either the LFP or the

spike-train autocorrelograms. Rather, the theta appears to

be correlated with the echolocating vocalizations, at least in

the brown bat [73]. Thus, it is not clear whether theta

sequences would be an important mechanism for naviga-

tion in bats. It remains to be tested whether theta is present

during the bat’s more natural mode of navigation through

flight, as opposed to very slow crawling in the lab, and

whether the same principles of theta sequences in rats

might apply to bats as they explore their environment

remotely through echolocation. Theta is a complex,

multi-dimensional phenomenon even within an individual

species, and it will be informative to understand in more

detail the commonalities and differences in the behavioral

and cognitive correlates of theta across species.

Conclusions
In summary, the hippocampus provides a number of

mechanisms that might support navigation, including

place representations for association with values and
Current Opinion in Neurobiology 2012, 22:294–300 
actions, representations at multiple spatial scales for larger

navigational tasks, short forward-ordered sequences which

might support look-ahead mechanisms to access infor-

mation about locations immediately ahead of an animal,

and longer replay sequences which might support learning

and planning during offline periods. These mechanisms

can be considered together as a highly dynamic repres-

entation of state that projects to downstream evaluation

and action selection networks. One implication is that

subcortical networks which were previously thought to

mediate relatively inflexible learning in conditioning tasks

may in fact mediate far more flexible learning and decision-

making when driven by the hippocampus. Two key sets of

issues remain relatively underexplored. First, few exper-

iments have been conducted during spatial tasks that do

not artificially constrain the animal’s trajectory by the

structure of the task or apparatus. Given technological

constraints, it can be difficult to obtain sufficient sampling

of place cell activity over an extended, two-dimensional

environment when behaviors are restricted to navigation-

ally directed trajectories. Second, there is very little direct

evidence of a causal role for place cell phenomena in

navigation. However, with recent advances in recording

technology [84] and the ability to stimulate neural activity

[85], these issues are likely to be addressed.
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